Расчет сваи на горизонтальную нагрузку пример

Содержание

Методика расчета свайного буронабивного фундамента с ростверком

Расчет сваи на горизонтальную нагрузку пример

Расчет свайного фундамента выполняется в зависимости от его типа. Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания.

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания. В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.

Схема буронабивного фундамента

Перед тем, как рассчитать свайный фундамент рекомендуется ознакомиться с ГОСТ «Грунты. Классификация» приложение А. Там представлены основные определения, исходя из которых, тип грунта можно определить визуально.

Далее потребуется таблица с указанием прочности грунта в зависимости от его типа и консистенции. Все необходимые для расчета характеристики приведены на картинках ниже.

Глинистая почва в области подошвы сваиГлинистая почва по длине сваиПесчаный грунтКрупнообломочные породы

Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

  • нагрузка на сваю (с учетом ростверка);
  • нагрузка на ростверк.

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

КонструкцияНагрузка
Каркасная стена с утеплителем, толщиной 15 см 30-50 кг/кв.м.
Деревянная стена толщиной 20 см 100 кг/кв.м.
Деревянная стена толщиной 30 см 150 кг/кв.м.
Кирпичная стена толщиной 38 см 684 кг/кв.м.
Кирпичная стена толщиной 51 см 918 кг/кв.м.
Гипсокартонные перегородки 80 мм без утепления 27,2 кг/кв.м.
Гипсокартонные перегородки 80 мм с утеплением 33,4 кг/кв.м.
Междуэтажные перекрытия по деревянным балкам с укладкой утеплителя 100-150 кг/кв.м.
Междуэтажные перекрытия из железобетона толщиной 22 см 500 кг/кв.м.
Пирог кровли с использованием покрытия из
листов металлической черепицы и металлических 60 кг/кв.м.
керамочерепицы 120 кг/кв.м.
битумной черепицы 70 кг/кв.м.
Временные нагрузки
От мебели, людей и оборудования 150 кг/кв.м.
от снега определяется по табл. 10.1 СП «Нагрузки и воздействия» в зависимости от климатического района

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

Тип нагрузкиКоэффициент
Постоянная для: — дерева — металла — изоляции, засыпок, стяжек, железобетона — изготавливаемых на заводе- изготавливаемых на участке строительства 1,11,051,11,21,3
От мебели, людей и оборудования 1,2
От снега 1,4

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

  • шаг свай;
  • длина сваи до края ростверка;
  • сечение.

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.

Источник: http://DomZastroika.ru/foundation/raschet-svajnogo-buronabivnogo-osnovaniya.html

Расчетные схемы для свай

Примечание: Как правило расчетная длина сжатого стержня определяется с помощью коэффициента μ, учитывающего способы закрепления концов стержня. Однако насколько это правило справедливо для свай, частично или почти полностью находящихся в грунте, а не в условном вакууме, я точно сказать не могу. Но об этом чуть позже.

Чтобы понять, почему это так и как такое вообще возможно, рассмотрим следующую картинку:

Рисунок 484.1. а) сваи-стойки (1) и висячие сваи (2), б) и в) расчетные схемы для свай.

Как видно из рисунка 484.1.а), у висячих свай, опирающихся на сжимаемые грунты, нет ярко выраженной опоры снизу. Нагрузка от сваи грунту передается боковой поверхностью (силы трения, возникающие при осадке висячей сваи под нагрузкой, на рисунке 484.1.

а) обозначены как т, их можно рассматривать как касательные напряжения, возникающие в грунтах) и нижним концом, где происходит сжатие по площади сечения (на рисунке 484.1.

а) нормальные напряжения в грунтах, возникающие под нижним концом сваи, обозначены как σ).

Сваи-стойки опираются на скальные грунты (кроме того к сваям-стойкам относят забивные сваи, которые опираются на малосжимаемые грунты). Таким образом у свай-стоек есть ярко выраженная опора снизу.

Более того наличие такой опоры — скальных или малосжимаемых грунтов — практически исключает возможность осадки сваи под нагрузкой, а потому считается, что силы трения на боковой поверхности свай-стоек не возникают и при расчетах несущей способности свай не учитываются.

В итоге какая бы нагрузка ни действовала на сваю-стойку, продольная N, горизонтальная Н, изгибающий момент М, все это в различных комбинациях или вместе, свая-стойка всегда рассматривается как сжатый стержень с жестким защемлением на нижней опоре (расчетная схема на рисунке 484.1.б) справа).

Примерное положение нейтральной оси сваи в результате действия указанных нагрузок показано пунктиром. Это может быть продольный изгиб от действия продольной нагрузки или прогиб на верхнем конце от действия горизонтальной нагрузки или изгибающего момента.

Все это сопровождается изменением угла наклона поперечных сечений сваи.

А вот с висячими сваями все несколько сложнее.

Если на висячую сваю действует только продольная нагрузка N, то продольного изгиба сваи вообще может не быть, так как свая просто даст осадку s (на рисунке 484.1.

б) примерное положение нейтральной оси под действием только продольной нагрузки показано отдельно).

Таким образом расчет висячей сваи на продольный изгиб при действии только вертикальной нагрузки не имеет никакого смысла, расчетная длина сваи в этом случае условно равна 0.

При этом если на висячую сваю действует горизонтальная нагрузка и(или) изгибающий момент, то даже без учета действия продольной нагрузки в зависимости от различных характеристик, речь о которых ниже, висячая свая рассматривается, как балка, лежащая на упругом основании, если расчетная отметка защемления сваи находится ниже глубины заложения сваи.

Примерное положение нейтральной оси висячей сваи при действии горизонтальной нагрузки и(или) изгибающего момента показано пунктиром рядом со стержнем, имеющим необходимую длину и жесткое защемление на нижнем конце. Кроме того на рисунке видно, что не только верхний, но и нижний конец сваи в этом случае будет иметь горизонтальное смещение.

Примечание: Как правило такая ситуация бывает в тех случаях, когда соотношение длины сваи к ширине или диаметру l/d < 10. Т.е. сама по себе висячая свая достаточно жесткая и вроде бы материал сваи проверки на устойчивость не требует, однако расчета по деформациям требует грунт, окружающий сваю.

Наглядный пример: вы забили в землю деревянный колышек длиной около 55 см диаметром 7 см на глубину 50 см. Если хорошо надавить на колышек сбоку (приложить к нему горизонтальную нагрузку), то земля с противоположной стороны колышка скорее всего промнется, а с той стороны где была приложена нагрузка, образуется щель между грунтом и колышком.

Ширина этой щели и есть горизонтальное перемещение сваи на отметке верха грунта. А если гибкость колышка относительно небольшая, то щель скорее всего будет и на отметке низа колышка.

К тому же, если грунт неоднородный, то горизонтальное смещение сваи может быть не только таким, как показано на рисунке, смещение нижнего конца может происходить и с той стороны, где действует нагрузка, но это уже частности.

Между тем при соответствующих характеристиках грунта и сваи (как висячей, так и сваи-стойки) расчетная длина сваи может быть меньше длины сваи — рисунок 484.1.в), и тогда часть сваи, находящаяся ниже расчетной отметки защемления, рассматривается просто как элемент, обеспечивающий жесткое защемление стержня.

Ну а теперь пришло время выяснить, как определяется

Расчетная длина сваи

Как это ни странно, но в нормативных документах, посвященных свайным фундаментам, нет четких указаний, как определить расчетную длину сваи.

Читайте также  Фундамент ростверк на сваях расчет

Да и вообще термин «расчетная длина» встречается только 1 раз, когда речь идет о буроинъекционных висячих сваях, проходящих через сильносжимаемые грунты, имеющие модуль деформации Е ≤ 50 кгс/см2.

В этом случае расчетная длина ld таких свай при расчетах материала свай на устойчивость (при определении продольного изгиба) принимается в зависимости от диаметра d свай равной:

ld = 25d при Е = 5-20 кгс/см2 (484.1.1)

ld = 15d при Е = 20-50 кгс/см2 (484.1.2)

Если же расчетная длина ld больше высоты сильносжимаемого слоя lg (на рисунке 484.1.а) эта высота обозначена как l для висячей сваи), то расчетную длину следует принимать равной:

ld = 2lg = 2l (484.1.3)

Как мы знаем, расчетная длина стержня определяется умножением действительной длины стержня на коэффициент μ. При жестком защемлении на нижнем конце и отсутствии какой-либо опоры на верхнем конце стержня μ = 2.

Таким образом для висячих буроинъекционных свай, обычно имеющих низкий ростверк, общее правило расчета сжатых стержней можно считать действующим.

А все остальные виды свай следует рассматривать как сжатые стержни, имеющие жесткое защемление в сечении, расположенном на расстоянии l1 от подошвы ростверка.

Является ли длина l1 расчетной, или при выполнении расчетов на устойчивость для определения расчетной длины длину l1 необходимо дополнительно умножать на μ, об этом можно только догадываться по контексту.

Лично мой вывод такой: длина l1 — это условная длина для свай-стоек. При определении продольного изгиба ее следует дополнительно умножать на коэффициент μ, учитывающий характер закрепления на опорах. При расчете на действие горизонтальной нагрузки и(или) изгибающего момента как висячих свай, так и свай-стоек используется понятие длины изгиба сваи.

На чем основано это утверждение, надеюсь, будет понятно после прочтения нижеследующего материала.

Определение длины l1 согласно СНиП 2.02.03-85 и согласно Руководству по проектированию свайных фундаментов (1980) несколько отличается.

Так в СНиПе используются коэффициенты условий работы, значения коэффициента пропорциональности в несколько раз выше и т.д.

Вообще-то СНиП является более свежим нормативным документом и более правильно пользоваться СНиПом, однако и действие Руководства пока никто не отменял и потому дальнейшее изложение будет сделано на основе Руководства по проектированию свайных фундаментов.

Определение длины сваи l1 производится по следующей формуле:

l1 = lo + 2/aд (484.2.1)

где lo (м) — длина участка сваи от уровня поверхности грунта до подошвы ростверка или просто до верха сваи-столба или сваи-колонны.

Если для свай, заделанных в скальный грунт, величина 2/ад > l, то в таких случаях длина l1 определяется по другой формуле

l1 = lo + l (484.2.2)

где l (м) — действительная глубина погружения сваи в грунт;

Таким образом для свай-стоек, имеющих четко выраженную опору снизу, да еще и заделанных в скальный грунт, длина l1 не может быть больше суммы надземной и подземной части.

Но надземная часть lo свай-колонн или свай-столбов может быть сопоставимой с подземной частью l и в этом случае при проведении соответствующих расчетов умножение длины сваи (как минимум для надземной ее части) на коэффициент µ обязательно.

А значит и расчетная длина таких свай может быть больше длины l1.На мой взгляд, это достаточное основание, чтобы считать длину l1 некоторой условной длиной.

А кроме того подобная ситуация (2/ад > l) может возникнуть только при рассмотрении сильносжимаемых грунтов, через которые проходит свая-стойка. Получается, что наличие подобных сильносжимаемых грунтов при выборе расчетной схемы вообще не учитывается, точнее, можно предположить, что сильносжимаемые грунты почти не препятствуют продольному изгибу свай-стоек.

Ну теперь пойдем дальше.

ад (1/м) — коэффициент деформации, определяемый по следующей формуле:

ад = (Кbc/EI)1/5 (484.3)

где К (тс/м4) — коэффициент пропорциональности, зависящий от свойств грунта, окружающего сваю. Значение К определяется по одной из следующих таблиц:

Таблица 484.1 (согласно Руководства по проектированию свайных фундаментов)

Таблица 481.2 (Согласно СНиП 2.02.03-85)

Примечания:

1. Как видим, согласно СНиП 2.02.03-85 «Свайные фундаменты» значения коэффициента пропорциональности принимаются примерно в 3 раза больше.

Однако на выходе, с учетом того, что при определении ад согласно СНиП подкоренное выражение следует дополнительно делить на коэффициент условий работы, в данном случае равный 3 (при рассмотрении только первой стадии напряженно-деформированного состояния системы «грунт — свая»), никакой разницы практически не будет.

2. Меньшие значения К как в в таблице 484.1, так и в таблице 484.

2 соответствуют более высоким значениям показателя консистенции IL глинистых грунтов или коэффициента пористости е песчаных грунтов (данные показатели указаны в скобках), а большие значения К соответствуют более низким значениям IL или е. Для грунтов с промежуточными значениями характеристик IL и е величины коэффициента К определяются интерполяцией.

3. Коэффициент К для плотных песков принимается на 30% выше, чем наибольшие значения К для заданного вида грунта.

bc (м) — условная ширина сваи или диаметр. Для свай с диаметром стволов ≥ 0,8 м условная ширина сваи принимается равной bс = d + 1, для свай с меньшими размерами сечений bс = 1,5d + 0,5.

Е (кгс/м2) — модуль упругости материала сваи. Для железобетонных свай принимается значение начального модуля упругости.

I (м4) — момент инерции поперечного сечения сваи. Если геометрические параметры сечения сваи изменяются по длине, то следует использовать приведенный момент инерции.

Таким образом при всех прочих неизменных характеристиках материала сваи значение коэффициента К тем меньше, чем больше сжимаемость грунта (чем меньше модуль деформации грунта). А чем меньше значение К, тем меньше значение ад.

Соответственно чем меньше значение ад, тем больше в итоге значение l1. Как уже говорилось, для свай-стоек, имеющих четко выраженную опору на скальный грунт, вводится ограничение длины l1, выраженное формулой (482.2).

Для висячих свай, за исключением буроинъекционных, такого ограничения не существует.

Далее,  в нормативных документах есть такое понятие как «приведенная длина сваи», обозначается как l, но так как никакой размерности она не имеет, то я бы назвал ее коэффициентом приведенной длины.

Коэффициент приведенной длины определяется по следующей формуле:

l = aдl  (484.4)

При расчетах на горизонтальную нагрузку и изгибающий момент требуется определять длину изгиба сваи :

lм = lo + k2/ад (484.2.3)

Где lo и ад принимаются такими же как и в формуле (484.2.1), а значение коэффициента k2 зависит от значения коэффициента приведенной длины и может изменяться в относительно небольших пределах, от k2 = 2.1 при l = 2.7 до k2 = 1.

85 при l ≥ 4, если определять по графику, или от k2 = 2.35 при l = 2.6 и lo = 0 до k2 = 1.8 при l ≥ 3.5 и lo ≥ 15 м, если определять по таблице с учетом высоты сваи над поверхностью грунта.

Тем не менее для упрощенных или предварительных расчетов при определении приведенной длины можно пользоваться формулой (484.2.1).

Так как при расчетах на горизонтальную нагрузку или изгибающий момент свая рассматривается просто как вертикальная консольная балка с жестким защемлением, то дополнительно умножать длину на коэффициент µ нет необходимости. Таким образом длина изгиба сваи равна расчетной длине вертикальной консольной балки.

Если рассматриваемые сваи имеют соединение с ростверком, обеспечивающее необходимую жесткость, то такие сваи и ростверк рассматриваются как пространственные рамные конструкции. Другими словами, при расчете таких свай следует учитывать дополнительный изгибающий момент, возникающий из-за жесткого соединения свай с ростверком. Впрочем это как правило актуально только для крайних в ряду свай.

Пример определения расчетной длины сваи

Рассмотрим все тот же деревянный колышек диаметром 7 см, вбитый на глубину 50 см в пластичную глину (IL = 0.75). Для удобства расчетов все данные будут переведены в метры и килограммсилы.

Согласно таблицы 484.1 для забивной сваи К = 250 тс/м4 (250000 кгс/м4);

Так как диаметр сваи меньше 0.8 м, то условная ширина сваи составит:

bc = 1.5·0.05 + 0.5 = 0.575 м;

Модуль упругости древесины составляет Е = 109 кгс/м2;

Источник: http://DoctorLom.com/item484.html

Расчет свайного фундамента

На странице представлена технология расчетов фундаментов на железобетонных сваях. Вы узнаете, какие нормативы СНиП регулируют расчет свайного фундамента с ростверком и как реализуется этот процесс на практике. 

Для того чтобы свайный фундамент был надежен и долговечен, необходимо профессионально производить его расчет. Результаты расчета свайного фундамента (ростверка) отражаются в проекте и являются обязательными для исполнения строителями. Наша компания осуществляет забивку свай для свайных фундаментов в строгом соответствии со строительными нормами и на основании проекта. Расчетом свайно-ростверковых фундаментов занимаются профильные специалисты — инженеры-проектировщики. Выполнению расчетов предшествуют геодезические изыскания на строительной площадке, которые дают проектировщикам необходимую исходную информацию о характеристиках грунтов на объекте.

Важно: без реализации геодезического анализа почвы на объекте проектирование ростверкового фундамента не может быть выполнено правильно, поскольку ключевой параметр  фундамента — его несущую способность, можно рассчитать только на основании силы сопротивления грунта.

Рис: Схема свайно-ростверкового фундамента

Процесс геодезии участка начинается с бурения пробных скважин, из которых забирается керн (проба) почвы для дальнейшего анализа в лабораторных условиях. На основе полученных данных производится расчет следующих параметров фундамента.

Свайная часть:

  • Требуемая глубина заложения опор;
  • Диаметр опор;
  • Общее количество опор в фундаменте;
  • Схема размещения свай.

Ростверковая часть:

  • Конфигурация ростверка — низкий, повышенный, высокий;
  • Сечение ростверка;
  • Устойчивость конструкции к нагрузкам на изгиб, продавливание;
  • Способ армирования обвязки.


Рис
: Схема положения ростверка фундамента

Читайте также  Как монтировать винтовые сваи своими руками

Важно: высота размещения ростверка выбирается исходя из степени пучинистости почвы на объекте и веса возводимого здания — легкие дома на склонном к пучению грунте строятся на высоких (поднятых на 20-30 см.

над уровнем почвы) ростверках, в нормальных грунтах обвязка укладывается на поверхность почвы, при необходимости обустройства технического подпола либо цокольного этажа, ростверк размещается ниже глубины промерзания почвы.

 

Как производится расчет свайного фундамента

Производство расчетов свайных фундаментов и оснований выполняется по предельным состояниям 1-й и 2-й группы.

К первой группе предельных состояний относятся:

  • прочность материалов, из которых изготовлены сваи и свайные ростверки
  • несущая способность грунта
  • несущая способность оснований, в случаях наличия значительных горизонтальных нагрузок

Смотрите так же:

  1. Характеристики шпунта
  2. Фундамент с ростверком на сваях

Ко второй группе предельных состояний относятся:

  • осадки свайных оснований от вертикальных нагрузок
  • перемещения (или горизонтальные повороты) свай вместе с окружающим грунтом при наличии горизонтальных нагрузок и моментов
  • образование или раскрытие трещин в железобетонных конструкциях свайных фундаментов.

Проектирование свайного ростверка по вышеуказанным предельным состояниям ведется по следующим формулам.

Устойчивость к продавливанию угловой сваей: , где: 

  • Fаi — нормативная нагрузка на угловую свайную опору;
  • h01 — высота обвязки в месте стыковки с угловой сваей;
  • — сила нагрузки, образуемой давлением сваи на ростверк;
  • Ві — расчетный коэффициент, который определяется на основании формулы Ві = К(Hоі/Соі).

Устойчивость к нагрузкам на изгиб:  и , где: 

  • Мхі, Муі — действующие на ростверк изгибающие моменты;
  • — нормативна нагрузка на свайные опоры;
  • Хі, Уі — расстояние между нижней гранью ростверка и осями свайных опор;
  • Мfx, Мfy — действующие на ростверк изгибающие моменты местного типа;

Прочностная устойчивость к поперечным нагрузкам:   :

  • Q — нормативная устойчивость свайных опор, размещенных вне части ростверка, испытующей наибольшие поперечные нагрузки;
  • b — ширина обвязки;
  • Rbt — сопротивление обвязки к нагрузкам на растяжение по материалу;
  • Ho — высота обвязки;
  • С — расстояние от нижнего контура ростверка до оси свайной опоры. 

Проектирование свайного фундамента ведется на основании двух нормативных актов:

  • Ростверк рассчитывается согласно рекомендаций СНиП №2.03.01 «Конструкции из бетона и железобетона»;
  • Сваи рассчитываются по СНиП №2.17.77 «Свайные фундаменты».

Важно: соблюдение положений вышеуказанных строительных документов при проектировании свайно-ростверковых фундаментов обязательно.

Итак, рассмотрим, какие аспекты при расчете свайных фундаментов принимаются в учет:

  • Все возможные нагрузки и воздействия на свайный фундамент рассчитываются на основании СНиП, при этом указанные значения умножаются на так называемый коэффициент надежности, определенный в «Правилах учета степени ответственности зданий и сооружений при проектировании конструкций».
  • Несущая способность сваи и свайного фундамента рассчитывается как на основные сочетания нагрузок, так и особые.  Расчет по деформациям производится на основные сочетания.
  • В расчетах используются расчетные значения характеристик применяемых материалов и грунтов на строительной площадке (на основании исследований грунтов и проведенных статических или динамических испытаний свай), исходя из значений, указанных в СНиП.
  • Кроме того в обязательном порядке учитываются тип используемых свай (сваи-стойки или висячие сваи), их собственный вес и показатели ветровых (креновых) нагрузок.
  • При расчетах фундамент с ростверком на сваях рассматривается, как единая рамная конструкция, воспринимающая как вертикальные, так и горизонтальные нагрузки, и изгибающие силы.
  • При значительных проектных нагрузках и в условиях сложных грунтов, в том числе с высоким уровнем грунтовых вод, в расчетах учитываются и отрицательные силы трения при осадке здания.
  • Есть и другие аспекты, связанные с различными грунтами и их состоянием, которые также учитываются в расчетах.

Пример расчета свайного фундамента

Пример расчета свайного фундамента можно легко найти в интернете, однако он изобилует специфическими формулами и символами, в которых неподготовленному человеку разобраться весьма проблематично, да и ни к чему – это дело специалистов.

В качестве примера приводим алгоритм расчета свайно-ростверкового фундамента:  Чтобы определить массу здания необходимо отдельно рассчитать вес каждого конструктивного элемента дома  (кровли, перекрытий, стен, стяжки, стропильной системы).

Делается это исходя из размеров конструктивных частей зданий и усредненного веса одного квадратного метра стройматериалов.

Рис: Вес конструктивных элементов здания

  • Расчет полезных нагрузок;

К полезным нагрузкам относится вес мебели, декоративной облицовки стен, людей и предметов, находящихся в доме во время эксплуатации сооружения. Согласно действующим строительным нормативам, величина эксплуатационной нагрузки составляет 100 кг на 1 м2 перекрытия жилого здания.

Важно: нагрузка высчитывается посредством умножения совокупной площади перекрытий дома (с учетом всех этажей) на 100 кг.

  • Расчет снеговых нагрузок;

Необходимо определить, какая нормативная снеговая нагрузка приходится на ваш регион, и умножить полученную величину на площадь кровли здания.

Рис: Карта снеговых нагрузок РФ

  • Определение совокупных нагрузок на фундамент;

Суммируем массу здания, полезную и снеговую нагрузку и умножаем полученную величину на коэффициент надежности. Для жилых зданий его величина составляет 1,2.

  • Определение грузонесущей способности сваи;

Исходя из полученных в результате геодезических изысканий характеристик грунтов высчитываем несущую возможность одной железобетонной сваи по формуле:

  • Определение количества свай в фундаменте и требуемой длинны опор.

Чтобы рассчитать количество свай делим совокупные нагрузки, действующие на основание, на грузонесущую способность одной сваи. Длина свай определяется исходя из типа грунтов на объекте. Опорная подошва опоры должна вскрывать неустойчивые верхние пласты грунта и углубляться  не менее чем на 1 метр в высокотвердые песчаные либо глинистые породы.

Рис: Схема заглубления ЖБ свай

К требуемой длине добавляются 40 см., необходимые для сопряжения свай с железобетонным ростверком. В фундаменте сваи размещаются с шагом в 2-2.5 метров, по одной опоре устанавливается на углах дома и в точках пересечения его стен. Расчет ростверка выполняется по указанных в предыдущем разделе статьи формулам. Рекомендуем доверить проектирование обвязки профессионалам, поскольку самостоятельно произвести правильные расчеты, не обладая должным опытом, невозможно. Наиболее часто используемое сечение ростверка — 40*30 см. Тело обвязки формируется из бетона марок М200 и М300, конструкция дополнительно армируется продольно-поперечным каркасом из прутьев арматуры А2 и А1 (10-15 мм. в диаметре).

Наша компания производит свайные работы, в том числе испытания свай, в строгом соответствии с расчетными данными и СНиП. Тем самым обеспечивается высокое качество результатов и надежность построенного свайного фундамента.

Получить детальную консультацию по погружению свай вы можете у наших специалистов, предварительно заполнив форму:

Так же рекомендуем посмотреть:

  1. Усиление свайного фундамента
  2. Погружение железобетонных свай

 
Наша компания занимается свайными работами — обращайтесь, поможем!

Источник: http://ustanovkasvai.ru/stati/77-raschet-svajnogo-rostverka

Расчет несущей способности свайного фундамента

Методика расчёта необходимого количества свай для фундамента с исходными данными и конкретными примерами.

Провести точный и правильный расчёт нагрузки свайного фундамента с учётом всех параметров, требований, норм и правил может каждый человек, знающий сопромат и разбирающийся в математике.

На практике это сложно и не нужно неспециалисту, а возможные просчёты могут привести не только к убыткам.  Но понять принцип расчёта поможет краткая упрощённая методика:

  • Подсчитывается общий вес сооружения.
  • Определяются снеговая и ветровая нагрузки исходя из средних обобщённых данных.
  • Подсчитывается полезная или бытовая нагрузка.
  • Подсчитывается общий вес ( сбор весов).
  • Ориентируясь на полную площадь строения и минимально допустимый шаг свай .определяется их общее максимальное количество
  • Подсчитывается суммарная площадь оснований свай.
  • Подбирается типоразмер и реальное количество свай.
  • На основе максимальных значений расстояний между сваями с учётом равного распределения нагрузок  формируется план свайного поля.
  • С учётом распределения нагрузок от строения проектируется и рассчитывается ростверк .

Конкретные цифры для расчётов

В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2,  это усреднённый показатель для грунтов российской средней полосы.

Исходные данные для расчёта свайных фундаментов

Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:

  • строения из бревна или бруса 3 м;
  • сооружения каркасного либо сборно-щитового типа 3 м;
  • здания с несущими стенами из облегчённых блоков 2,5 м;
  • дома из кирпича  и полнотелых бетонных блоков 2 м;
  • монолитные сооружения 1,7 м.

Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.

Вес конструкций и частей зданий

Для сбора весов  допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.

Предпочтительный ориентир при отсутствии точной информации максимальное значение.

Стены :

  • кирпичные 600-1200кг\м2;
  • бревенчатые 600 кг\м2;
  • газо- и пенобетонные 400-900 кг\м2;
  • каркасные и панельные 20-30 кг\м2.

Крыши с учётом стропильной системы:

  • листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
  • листы асбоцементные 60-80 кг\м2;
  • рубероид и другие мягкие покрытия 30-50 кг\м2.

Перекрытия:

  • деревянные с утеплителем 70-100 кг\м2;
  • цокольные с утеплителем 100-150 кг\м2;
  • монолитные армированные 500 кг\м2;
  • плитные пустотелые 350 кг\м2.

Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.

Пример подсчёта потребности в сваях

Для примера расчёта возьмём одноэтажный дачный дом:

  • с крышей из металлочерепицы;
  • стены бревенчатые;
  • перекрытия деревянные;
  • размер 6 Х 6 м;
  • без фундаментальной печи;
  • высота стен 2,4 м.
Читайте также  Размер оголовка винтовой сваи

Расчет:

  • вес стен из бревна: 2,4 (высота) Х  24 (периметр) Х 600 =  34560;
  • вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
  • вес крыши: 54 (площадь) * 20 = 1080;
  • полезная нагрузка: 100 Х 36 = 3600.

Сборный вес дома: 34560+7200+1080+3600=46440 кг.

Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.

Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.

Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук  винтовых свай.

Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.

Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.

Расчёт ростверка

Назначение ростверка равномерное распределение нагрузок на свайную конструкцию. Расчёты параметров ростверка учитывают силы продавливания основания в целом, по каждому углу и воздействия на изгиб.

Довольно сложные подсчёты  застройщикам могут заменить стандартные решения, применение которых возможно только  небольших индивидуальных строений:

  • Материал исполнения ростверка: металлический швеллер, двутавр, монолитный бетон с армированием, брус или бревно сечением не менее материала стен.
  • Голова сваи должна входить в ростверк не меньше, чем на 10 см  для монолитного исполнения
  • По ширине ростверк не может быть меньше толщины стены.
  • Высота должна быть не меньше 30 см для бетона.
  • Ростверк должен располагаться как минимум на 20 см над уровнем почвы.
  • Соединение опор с ростверком может быть жёстким либо свободным.

Источник: http://fasad-prosto.ru/fundament/raschet-nagruzki-svaynogo-fundamenta.html

Указания по расчету свайных фундаментов | Строительный справочник

Расчет свайных фундаментов и их оснований должен быть выполнен по предельным состояниям:
а) первой группы:— по прочности материала сван и свайных ростверков;— по несущей способности грунта основания свай;— но несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или сложены крутопадающими слоями фунта и т.п.;

б) второй группы

— по осадкам оснований свай и свайных фундаментов от вертикальных на-грузок;
— по перемещениям свай (горизонтальным up , углам поворота головы свай ψp) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов.— по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и фунтов.

При наличии результатов полевых исследований несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний

Расчет сван по прочности материала

При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в фунте в сечении, расположенном от подошвы ростверка на расстоянии l1 определяемом по формуле:

l1=l0 + 2/ag ,

где l0— длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;
ag — коэффициент деформации. 1/м.

Если для буровых свай и свай — оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение 2/ag , то следует принимать

l1=l0 + h

(где h — глубина погружения сваи или сваи — оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).
При расчете по прочности материала буро-инъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации Е = 5 МПа и менее, расчетную длину свай на продольный изгиб ld , в зависимости от диаметра свай d следует принимать равной:

при Е ≤ 2 МПа                     ld = 25d
при Е = 2 — 5 МПа               ld = 15d.

В случае если ld превышает толщину слоя сильносжимаемого грунта расчетную длину следует принимать равной 2hg.

Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3l (где l -длина сваи).Усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:1,5 — при расчете по прочности;1,25 — при расчете по образованию и раскрытию трещин.В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимается равным единице.

Расчетная нагрузка, допускаемая на железобетонную сваю по материалу, определяется по формуле:

N = ϒb3ϒcbRbAb+RgcAg

где ϒb3 — коэффициент условий работы бетона, принимаемый  ϒb3= 0,85 для свай, изготавливаемых на месте строительства;
ϒcb — коэффициент, учитывающий влияние способа производства свайных работ;
Rb — расчетное сопротивление бетона сжатию;
Ab — площадь сечения сваи нетто,
Rgc — расчетное сопротивление арматуры сжатию;
Ag — площадь сечения арматуры.
Пример 1.

Определение несущей способности сваи по материалу
Определить несущую способность буронабивной сваи диаметром d = 0,2 м по материалу. Свая выполняется в глинистом грунте без крепления стенок и отсутствии грунтовых вод. Материал сваи: бетон В20. Свая армирована 4 стержнями d12 A400.

Решение:
Площадь сечения сваи нетто:
Ab = πd2/4 =  3,14 * 0,222/4 = 0,0314 м2.
Площадь сечения 4d12 A400: Ag = 452 мм2 = 452 * 10-6 м2.
Расчетное сопротивление бетона сжатию: Rb = 11,5 МПа.
Расчетное сопротивление арматуры А400 сжатию:
Rgc = 355 МПа.
Коэффициент условии работы бетона: ϒb3 = 0,85.

Коэффициент, учитывающий влияние способа производства свайных работ: ϒcb = 1,0.
Расчетная нагрузка, допускаемая на .железобетонную сваю но материалу:

N = ϒb3ϒcbRbAb+RgcAg

N  = 0,85* 1,0 * 11,5 * 0,0314 + 355 * 452 * 10-6 = 0,467 МПа = 467 кН.

 Расчет свай по несущей способности грунта

Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия:

N  ≤  Fd/ γk,

где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
Fd — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи.
γk — коэффициент надежности по грунту.

При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности ио нагрузке, увеличивающим расчетное усилие.

Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20 % (кроме фундаментов опор линий электропередачи).

Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10 % при четырех сваях в ряду и на 20 % при восьми сваях и более При промежуточном числе свай процент повышения расчетной нагрузки определяется интерполяцией.Расчетную нагрузку на сваю N, кН. следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.

Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле:

N  =  Nd/ n ±  Mxy / ∑y2i  ±  Myy / ∑x2i

где Nd — расчетная сжимающая сила, кН;
Mx , My расчетные изгибающие моменты, кНм, относительно главных центральных осей x и y плана свай в плоскости подошвы ростверка;

 n — число свай в фундаменте.
xi, yi  — расстояния от главных осей до оси каждой сваи, м;

х , у — расстояния от главных осей до оси каждой сваи, для которой вычисляется расчетная нагрузка, м.

Рис. 1. Схема для определении нагрузки на сваю

Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.
Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами.

Пример 2.

Определение нагрузок на сваи во внецентренно-нагруженном фундаменте

Необходимо определить нагрузки, приходящиеся на сваи (см. рис.2). Количество свай в фундаменте n = 6. Нагрузки, действующие на фундамент:

My = 300 кНм; Nd = 2400 кН.

Решение:

Минимальная нагрузка на сваю по формуле:

Nmin  =  Nd/ n ±  Mxy / ∑y2i  ±  Myy / ∑x2i

Nmin  = 2400/6 − 0 − 300*0,9/4*0,92= 316,67 кН.

Максимальная нагрузка на сваю по формуле:

Nmax  =  Nd/ n ±  Mxy / ∑y2i  ±  Myy / ∑x2i

Nmax = 2400/6 + 0 + 300*0,9/4*0,92= 483,33 кН.

Источник: http://spravkidoc.ru/news/ukazaniya-po-raschetu-svajnyx-fundamentov.html

Понравилась статья? Поделить с друзьями: